Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
J Physiol ; 600(11): 2637-2650, 2022 06.
Article in English | MEDLINE | ID: mdl-35233776

ABSTRACT

Ventricular arrhythmias can cause death in heart failure (HF). A trigger is the occurrence of Ca2+ waves which activate a Na+ -Ca2+ exchange (NCX) current, leading to delayed after-depolarisations and triggered action potentials. Waves arise when sarcoplasmic reticulum (SR) Ca2+ content reaches a threshold and are commonly induced experimentally by raising external Ca2+ , although the mechanism by which this causes waves is unclear and was the focus of this study. Intracellular Ca2+ was measured in voltage-clamped ventricular myocytes from both control sheep and those subjected to rapid pacing to produce HF. Threshold SR Ca2+ content was determined by applying caffeine (10  mM) following a wave and integrating wave and caffeine-induced NCX currents. Raising external Ca2+ induced waves in a greater proportion of HF cells than control. The associated increase of SR Ca2+ content was smaller in HF due to a lower threshold. Raising external Ca2+ had no effect on total influx via the L-type Ca2+ current, ICa-L , and increased efflux on NCX. Analysis of sarcolemmal fluxes revealed substantial background Ca2+ entry which sustains Ca2+ efflux during waves in the steady state. Wave frequency and background Ca2+ entry were decreased by Gd3+ or the TRPC6 inhibitor BI 749327. These agents also blocked Mn2+ entry. Inhibiting connexin hemi-channels, TRPC1/4/5, L-type channels or NCX had no effect on background entry. In conclusion, raising external Ca2+ induces waves via a background Ca2+ influx through TRPC6 channels. The greater propensity to waves in HF results from increased background entry and decreased threshold SR content. KEY POINTS: Heart failure is a pro-arrhythmic state and arrhythmias are a major cause of death. At the cellular level, Ca2+ waves resulting in delayed after-depolarisations are a key trigger of arrhythmias. Ca2+ waves arise when the sarcoplasmic reticulum (SR) becomes overloaded with Ca2+ . We investigate the mechanism by which raising external Ca2+ causes waves, and how this is modified in heart failure. We demonstrate that a novel sarcolemmal background Ca2+ influx via the TRPC6 channel is responsible for SR Ca2+ overload and Ca2+ waves. The increased propensity for Ca2+ waves in heart failure results from an increase of background influx, and a lower threshold SR content. The results of the present study highlight a novel mechanism by which Ca2+ waves may arise in heart failure, providing a basis for future work and novel therapeutic targets.


Subject(s)
Heart Failure , Sarcoplasmic Reticulum , Animals , Arrhythmias, Cardiac/etiology , Caffeine/pharmacology , Calcium/metabolism , Heart Failure/complications , Myocytes, Cardiac/physiology , Sarcoplasmic Reticulum/metabolism , Sheep , TRPC6 Cation Channel
4.
Circ Res ; 126(3): 395-412, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31999537

ABSTRACT

Normal cardiac function requires that intracellular Ca2+ concentration be reduced to low levels in diastole so that the ventricle can relax and refill with blood. Heart failure is often associated with impaired cardiac relaxation. Little, however, is known about how diastolic intracellular Ca2+ concentration is regulated. This article first discusses the reasons for this ignorance before reviewing the basic mechanisms that control diastolic intracellular Ca2+ concentration. It then considers how the control of systolic and diastolic intracellular Ca2+ concentration is intimately connected. Finally, it discusses the changes that occur in heart failure and how these may result in heart failure with preserved versus reduced ejection fraction.


Subject(s)
Calcium Signaling , Diastole , Heart Failure/metabolism , Myocardium/metabolism , Animals , Heart Failure/physiopathology , Humans , Ventricular Function
6.
Sci Rep ; 9(1): 6801, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043634

ABSTRACT

Heart failure (HF) is characterized by poor survival, a loss of catecholamine reserve and cellular structural remodeling in the form of disorganization and loss of the transverse tubule network. Indeed, survival rates for HF are worse than many common cancers and have not improved over time. Tadalafil is a clinically relevant drug that blocks phosphodiesterase 5 with high specificity and is used to treat erectile dysfunction. Using a sheep model of advanced HF, we show that tadalafil treatment improves contractile function, reverses transverse tubule loss, restores calcium transient amplitude and the heart's response to catecholamines. Accompanying these effects, tadalafil treatment normalized BNP mRNA and prevented development of subjective signs of HF. These effects were independent of changes in myocardial cGMP content and were associated with upregulation of both monomeric and dimerized forms of protein kinase G and of the cGMP hydrolyzing phosphodiesterases 2 and 3. We propose that the molecular switch for the loss of transverse tubules in HF and their restoration following tadalafil treatment involves the BAR domain protein Amphiphysin II (BIN1) and the restoration of catecholamine sensitivity is through reductions in G-protein receptor kinase 2, protein phosphatase 1 and protein phosphatase 2 A abundance following phosphodiesterase 5 inhibition.


Subject(s)
Catecholamines/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Heart Failure/drug therapy , Myocardial Contraction/drug effects , Myocytes, Cardiac/drug effects , Phosphodiesterase 5 Inhibitors/pharmacology , Ventricular Remodeling/drug effects , Animals , Disease Models, Animal , Female , Heart Failure/metabolism , Heart Failure/pathology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Sheep , Tadalafil/pharmacology
7.
Microb Pathog ; 121: 9-21, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29704667

ABSTRACT

The lung is the entry site for Bacillus anthracis in inhalation anthrax, the most deadly form of the disease. Spores must escape through the alveolar epithelial cell (AEC) barrier and migrate to regional lymph nodes, germinate and enter the circulatory system to cause disease. Several mechanisms to explain alveolar escape have been postulated, and all these tacitly involve the AEC barrier. In this study, we incorporate our primary human type I AEC model, microarray and gene enrichment analysis, qRT-PCR, multiplex ELISA, and neutrophil and monocyte chemotaxis assays to study the response of AEC to B. anthracis, (Sterne) spores at 4 and 24 h post-exposure. Spore exposure altered gene expression in AEC after 4 and 24 h and differentially expressed genes (±1.3 fold, p ≤ 0.05) included CCL4/MIP-1ß (4 h), CXCL8/IL-8 (4 and 24 h) and CXCL5/ENA-78 (24 h). Gene enrichment analysis revealed that pathways involving cytokine or chemokine activity, receptor binding, and innate immune responses to infection were prominent. Microarray results were confirmed by qRT-PCR and multiplex ELISA assays. Chemotaxis assays demonstrated that spores induced the release of biologically active neutrophil and monocyte chemokines, and that CXCL8/IL-8 was the major neutrophil chemokine. The small or sub-chemotactic doses of CXCL5/ENA-78, CXCL2/GROß and CCL20/MIP-3α may contribute to chemotaxis by priming effects. These data provide the first whole transcriptomic description of the human type I AEC initial response to B. anthracis spore exposure. Taken together, our findings contribute to an increased understanding of the role of AEC in the pathogenesis of inhalational anthrax.


Subject(s)
Alveolar Epithelial Cells/microbiology , Bacillus anthracis/pathogenicity , Chemokines/metabolism , Gene Expression Profiling , Spores, Bacterial/pathogenicity , Anthrax/genetics , Anthrax/metabolism , Chemokine CCL20/genetics , Chemokine CCL20/metabolism , Chemokine CXCL5/genetics , Chemokine CXCL5/metabolism , Chemokines/genetics , Humans , Interleukin-8/genetics , Interleukin-8/metabolism , Monocytes/metabolism , Monocytes/microbiology , Neutrophils/metabolism , Neutrophils/microbiology , Platelet Factor 4/genetics , Platelet Factor 4/metabolism , Respiratory Tract Infections/genetics , Respiratory Tract Infections/metabolism , Up-Regulation
8.
Sci Rep ; 7(1): 5820, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28725052

ABSTRACT

The first experimental TE-mode silicon-on-insulator (SOI) isolators using Faraday Rotation are here realized to fill the 'missing link' in source-integrated near infrared photonic circuits. The isolators are simple 1D 2-element waveguides, where garnet claddings and longitudinal magnetic fields produce nonreciprocal mode conversion, the waveguide equivalent of Faraday Rotation (FR). Quasi-phase matched claddings are used to overcome the limitations of birefringence. Current experimental SOI isolators use nonreciprocal phase shift (NRPS) in interferometers or ring resonators, but to date NRPS requires TM-modes, so the TE-modes normally produced by integrated lasers cannot be isolated without many ancillary polarisation controls. The presented FR isolators are made via lithography and sputter deposition, which allows facile upscaling compared to the pulsed laser deposition or wafer bonding used in the fabrication of NRPS devices. Here, isolation ratios and losses of 11 dB and 4 dB were obtained, and future designs are identified capable of isolation ratios >30 dB with losses <6 dB.

9.
Respir Res ; 17(1): 111, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27604339

ABSTRACT

BACKGROUND: Cigarette smoking (CS) is the main risk factor for the development of chronic obstructive pulmonary disease (COPD) and most COPD exacerbations are caused by respiratory infections including influenza. Influenza infections are more severe in smokers. The mechanism of the increased risk and severity of infections in smokers is likely multifactorial, but certainly includes changes in immunologic host defenses. METHODS: We investigated retinoic acid-inducible protein I (RIG-I) and interferon (IFN) induction by influenza A virus (IAV) in human bronchial epithelial cells (HBEC) isolated from smokers or nonsmokers. Subcultured HBEC cells were infected with A/Puerto Rico/8/1934 (PR8) IAV at an MOI of 1. After 24 h of infection, cells and supernatants were collected for qRT-PCR, immunoblot or ELISA to determine RIG-I, Toll-like receptor3 (TLR3) and IFN expression levels. RESULTS: IAV exposure induced a vigorous IFN-ß, IFN-λ 1 and IFN-λ 2/3 antiviral response in HBEC from nonsmokers and significant induction of RIG-I and TLR3. In cells from smokers, viral RIG-I and TLR3 mRNA induction was reduced 87 and 79 % compared to the response from nonsmokers. CS exposure history was associated with inhibition of viral induction of the IFN-ß, IFN-λ1 and IFN-λ 2/3 mRNA response by 85, 96 and 95 %, respectively, from that seen in HBEC from nonsmokers. The demethylating agent 5-Aza-2-deoxycytidine reversed the immunosuppressive effects of CS exposure in HBEC since viral induction of all three IFNs was restored. IFN-ß induction of RIG-I and TLR3 was also suppressed in the cells from smokers. CONCLUSION: Our results suggest that active smoking reduces expression of antiviral cytokines in primary HBEC cells. This effect likely occurs via downregulation of RIG-I and TLR3 due to smoke-induced epigenetic modifications. Reduction in lung epithelial cell RIG-I and TLR3 responses may be a major mechanism contributing to the increased risk and severity of viral respiratory infections in smokers and to viral-mediated acute exacerbations of COPD.


Subject(s)
Bronchi/virology , DNA Methylation , Epigenesis, Genetic , Epithelial Cells/virology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/genetics , Influenza, Human/virology , Smoking/genetics , Bronchi/drug effects , Bronchi/metabolism , Cells, Cultured , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , DNA Methylation/drug effects , DNA Modification Methylases/antagonists & inhibitors , DNA Modification Methylases/metabolism , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Host-Pathogen Interactions , Humans , Influenza, Human/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Interferons/genetics , Interferons/metabolism , Interleukins/genetics , Interleukins/metabolism , Primary Cell Culture , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Immunologic , Smoking/adverse effects , Smoking/metabolism , Time Factors , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism
10.
Heart ; 102(21): 1750-1756, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27465053

ABSTRACT

OBJECTIVE: Experimental evidence has shown potential cardioprotective actions of phosphodiesterase type-5 inhibitors (PDE5is). We investigated whether PDE5i use in patients with type 2 diabetes, with high-attendant cardiovascular risk, was associated with altered mortality in a retrospective cohort study. RESEARCH DESIGN AND METHODS: Between January 2007 and May 2015, 5956 men aged 40-89 years diagnosed with type 2 diabetes before 2007 were identified from anonymised electronic health records of 42 general practices in Cheshire, UK, and were followed for 7.5 years. HRs from multivariable survival (accelerated failure time, Weibull) models were used to describe the association between on-demand PDE5i use and all-cause mortality.DC1SM110.1136/heartjnl-2015-309223.supp1Supplementary appendix RESULTS: Compared with non-users, men who are prescribed PDE5is (n=1359) experienced lower percentage of deaths during follow-up (19.1% vs 23.8%) and lower risk of all-cause mortality (unadjusted HR=0.69 (95% CI: 0.64 to 0.79); p<0.001)). The reduction in risk of mortality (HR=0.54 (0.36 to 0.80); p=0.002) remained after adjusting for age, estimated glomerular filtration rate, smoking status, prior cerebrovascular accident (CVA) hypertension, prior myocardial infarction (MI), systolic blood pressure, use of statin, metformin, aspirin and ß-blocker medication. PDE5i users had lower rates of incident MI (incidence rate ratio (0.62 (0.49 to 0.80), p<0.0001) with lower mortality (25.7% vs 40.1% deaths; age-adjusted HR=0.60 (0.54 to 0.69); p=0.001) compared with non-users within this subgroup. CONCLUSION: In a population of men with type 2 diabetes, use of PDE5is was associated with lower risk of overall mortality and mortality in those with a history of acute MI.


Subject(s)
Cardiovascular Diseases/mortality , Diabetes Mellitus, Type 2/mortality , Erectile Dysfunction/drug therapy , Erectile Dysfunction/mortality , Phosphodiesterase 5 Inhibitors/therapeutic use , Adult , Aged , Aged, 80 and over , Cardiovascular Diseases/diagnosis , Cause of Death , Chi-Square Distribution , Databases, Factual , Diabetes Mellitus, Type 2/diagnosis , Electronic Health Records , England/epidemiology , Erectile Dysfunction/diagnosis , General Practice , Humans , Kaplan-Meier Estimate , Linear Models , Logistic Models , Male , Middle Aged , Multivariate Analysis , Myocardial Infarction/diagnosis , Myocardial Infarction/mortality , Protective Factors , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Treatment Outcome
11.
Opt Lett ; 35(8): 1299-301, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20410999

ABSTRACT

Second-harmonic generation using the type-II polarization configuration is demonstrated in quasi-phase-matched GaAs radicalAlGaAs superlattice waveguides. Phase-matching wavelengths and conversion efficiencies were determined for several quasi-phase-matching periods using 1.9 ps pulses. Saturation effects at high input power were concluded to be the result of third-order nonlinear effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...